Module 5: Logic circuits with DNA
strand displacement (part 1)

CSES590: Molecular programming and neural
computation.
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Goal: Engineering embedded conftrollers
for biochemical systems

N
A cell-based “computer” A N
needs to be biocompatible, BﬁD
and sense, analyze and act on D—Out
biological information C

y,

4 )
Biological Information is

encoded in the sequences

and amounts of biomolecules

(DNA, RNA, proteins, etc.)
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Logic circuits using DNA strand

displacement

Q:Why digital logic? Biology is not digital.

A: Because adherence to digital logic design has enabled incredibly
complex, manmade information technology. We don’t need to do exactly
what biology does.

Q:Why DNA strand displacement!?

A: Because it’s a surprisingly powerful building block.
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Basic rules

Short domains bind reversibly

—>

5’ -TTAAGT-3'

5’ -TTAAGT-3’
3’ -AATTCA-5'

3’ —-AATTCA-5’ -
e

Long domains bind irreversibly

5" -TTAAGTCTAGGTGGGTTTCT-3'

5’ -TTAAGTCTAGGTGGGTTTCT-3'
3’ -AATTCAGATCCACCCAAAGA-5'

S ———

3’ -AATTCAGATCCACCCAAAGA-5'

e
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DNA strand displacement mechanism

RNA sequence:
o' —AAUUCAGAUCCAC

1 2

For a review see D.Y. Zhang and G. Seelig, Nature Chemistry (201 1)
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DNA strand displacement mechanism
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For a review see D.Y. Zhang and G. Seelig, Nature Chemistry (201 1)
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DNA strand displacement mechanism

e 5
2 4
! | 2 3
o > T

Strand displacement is initiated at the single-stranded toeholds. Toehold binding is a reversible
process.
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DNA strand displacement mechanism

Strand displacement proceeds through a branch migration. Branch migration is a random walk.
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DNA strand displacement mechanism
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Release of the output strand is (almost) irreversible in the absence of a toehold for the reverse
reaction.
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Sighals can propagate through multiple

lavers

t '7]
2
I t
6 - .
t* | * t* t 7
Gate 2
3
2 t
6 - .
t* 2% t*
Gate

The sequences of inputs and outputs can be completely independent.
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Signals can propagate through multiple
layers

The sequences of inputs and outputs can be completely independent.
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Signals can propagate through multiple

lavers

t Oﬂ t lﬂ
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? t | t
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t* | * t* tg
Gate o
3
2 t
6 - .
t* 2% t*
Gate

The sequences of inputs and outputs can be completely independent.
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Signals can propagate through multiple

lavers

t 7
2
1
; L \I\.':t. /
6 ;< %k ->l<- .
t I t t;,
Gate 4
3
2 t
6 - .
t* 2% t*
Gate

The sequences of inputs and outputs can be completely independent.
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Signals can propagate through multiple

lavers

active/productive
) t | t toehold
e ->
t* | * t* t 7
Waste 3 4
2 t /
6 - .
t* 2% t*
Gate

The sequences of inputs and outputs can be completely independent.
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Signals can propagate through multiple

lavers
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Gate

The sequences of inputs and outputs can be completely independent.
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Signals can propagate through multiple

lavers

? t | t
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t* | * t* t 9
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t* 2% t*

Gate

The sequences of inputs and outputs can be completely independent.
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Signals can propagate through multiple

lavers

output
2 t 3 t
ADEEER
? t | t . .
- -> active/productive
ét; | * E*- . toehold
Waste |
\ t 2t
< =
t* 2% t*
Waste

The sequences of inputs and outputs can be completely independent.
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Signals can propagate through multiple

lavers

t7
2 3 4
I t 2 t 3 t
—> &- —= —> - . — .. 2l —
000 ét* | ¥ t* ét* gk £k ét* 3% ¥ 000
Gate Gate Gate

=P ox

The sequences of inputs and outputs can be completely independent.

Out
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OR logic / fan-in
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OR logic / fan-in
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OR logic / fan-in
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OR logic / fan-in
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AND logic

t7
3
I t t 2 t
E-—m—— - )
Gate Gate
in 2

Friday, January 24, 14




AND logic
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AND logic
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AND logic
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AND logic

Input | t* |
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AND logic

t7
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AND logic
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AND logic

toehold releases spontaneously
but reaction is reversible!

NNl
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AND logic

In |
In 2
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AND logic
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AND logic
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AND logic
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AND logic
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AND logic
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Why is NOT difficult?

Absence of a signal could be “NOT” or could simply mean that computation hasn’t occured yet.
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Dual-rail logic: AND and OR are sufficient
for feed-forward digital circuifs

Replace X by the X

pair (X0,X1): :.— 7
Y

XO0 on: logical “0”

“I”

X1 on:logical

X0, XI off:
not yet computed

- -

X0, X1 on: Y
error

Single wire circuit using NOT,AND, OR, NAND, ... can be replaced by a dual rail representation
using AND and OR only. This implementation requires maximally 2x as many gates.
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Differences and similarities between

electronic and molecular circuits

|. Lack of spatial isolation: All gates and signals diffuse in solution and interact
stochastically.

2. Computation energy and non-reusable gates: Both inputs and gates are
consumed as the circuit is evaluated by cascade reactions, so they cannot be reused.

3. Data encoding: Information is encoded in the sequences and concentration of
biomolecules.

4. Lack of clear hardware software separation: Gates and circuits come
pre-programmed for the specific computation they are meant to carry out.

5. Speed of computation: A circuits evaluation under typical reaction conditions
takes minutes to hours.

6. Need for dual-rail logic: NOT is difficult to implement
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visual DSD: A tool for simulating DNA strand

displacement systems

http://research.microsoft.com/en-us/projects/dna/

Use links to “web simulator” and “tutorial”’ for hw.

Examples: |

Simulation: |_Stochastic » | View: | » | Options; | v
Code DNA Input
Zoom ~{ ) Save | |Losd

directive sample 200000,0 2000

directive plot <yllt™ yl x">; <y2 t* y2r>
def bind = 0.00001 (* /nM/5

def unbind = 0.1 (* /5 *)

def XS = 100

new x@ bind,unbind
new t bind,unbind

def SpeciesL(N,al,a) = N * <al t* a x>

def SpeciesR(N,a,ar) = N * <a t~ ar>

def BinaryLRXRR(N,al,8,b,br,c,cr,d,dr) = new i
( constant N * t~*:[a x* b]<i t* cr t~ dra:t*
| constant N * X§ * x~*:[b i};<c>[t~ cr)i«d>[t~ dr]
)

def UnaryLxLL(N,al,8,cl,c,dl,d) = (*A->{N}C+D*)
new |

( constant N * t~*i[a | tn >

il Pt . )
;cons!antN x5 * xQ*ili) | »'Cuit‘ (

def UnaryRx(N,a,ar) = (* A ->{N} *)
constant N * [a]:itA*

( UnarylxLL(1000,y1l,y1,y1l,y1,y1l,y1)

| BinaryLAxRR(30000,y1l,y1,y2,y2¢,y2,y2¢,y2,y2r)
| UnaryRx(1000,y2,y2r)

[E wsl(1000,y1l,y1)

| SpeciesR(1000,y2,y2r)

)

|_Solve | |_Simulate Pause

Rules: |_Default

Domains

Reactions

yil t
yu* t*

vil

yl*

License Update
Simulation: |_Stochastic ¥ ) View: (¥ ] Options: (¥
Species Reactions Graph Text Domaing
* Pan Zoom Layout

Zoom | | 41| % (fe) |Layout

Horzontal Layout | Group Initial Nodes | Crop

=5
Compilation

Examples: | v | | _Sclve | [ Simulate Pause | Rules: | Default License

Visual DSD - lepton.reseal

Examples: 2 |_Solve | |_Simulate | | Pause |

Simulation: [_Stochastic v ] Vview: (v ] Options: ¥

Species Reactions Graph Text

(Show all[Hide all| [= <y1l t* y1 x~>[m= <y2 t~ y2r>]

Rules: | Default M |_License || Update |

Domains

el

5403

510

480~

450

420~

390

360

330

300~

270

240

210

180

150~

120

90~

60—

0 5000 10000 15000 20000

25000

30000

B R B L L L B B L N L L M L L S L L R A

35000

N cytien y1xns
N <y2tryars

40000 45000 501

Phillips, Cardelli. Royal Society Interface, 2009
Lakin, Youssef, Polo, Emmott, Phillips. Bioinformatics, 201 |
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http://research.microsoft.com/en-us/projects/dna/
http://research.microsoft.com/en-us/projects/dna/

visual DSD: A tool for simulating DNA strand

displacement systems

GTCA  CCCTTTACATTACATAACAA TATTCC
_—
CAGT CCCTTTACATTACATAACAA  TATTCC
; GGGAAATGTAATGTATTGTT _ATAAGCG

CCCAAAACAAAACAAAACAA

—
CCCAAAACAAAACAAAACAA GCTA
GGGTITTIGTITTIGTITIGTT _CGA]

th --> (5') TACCAA (3')

tx --> (5') TATTCC (3)

to --> (5') GTCA (3')

b --> (5') CCCTTTTCTAAACTAAACAA (3')
x --> (5') CCCAAAACAAAACAAAACAA (3')

<tb”™ b> <tx” x>

tb b  tx

b tx_ x to_
th* b* tx* X* to*
{tb"*}[b tx*]:[x to"]

17

Slide credit: Andrew Phillips (MSR)
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visual DSD: A tool for simulating DNA strand
displacement systems

Examples: | v | | Compile | | Simulate | [ Analyse |  Pause Compilation: | Default

Code I DNA I Input _

DNEE BE EEREX P FE L

Compilation | Simulation I Analysis

directive scale 10.0

def Inputl() = <tb™ b>

def Input2() = <tx™ x>

def Output() = <x to™>

def AND() = {tb**}[b tx*]:[x to"]
def Reporter() = <fl >[x]{to"*}

( 10*Inputl()

| 10*Input2()

100<AND( )

100*Reporter()

|
|
)

J

directive duration 10000.0 points 1000
directive plot <tb” b>; <tx” x>;<x to”>; <flr x>

b
b*

b

=
— —_— —
u:-c

Ln 10 Col 14 Ch 14

v | Options: [ ¥ | Simulation: [ Stochastic

v | view: (v ] (2] [ License | | Update |

Species | Reactions | Graph | Text ‘Domainsl SBML IMATLABI PRISM

INS

Slide credit: Andrew Phillips (MSR)
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visual DSD: A tool for simulating DNA strand
displacement systems

Examples: | v | | Compile | | Simulate | | Analyse | Compilation: | Default v | Options: [ ¥ | Simulation: [ Stochastic v ) View: (v ] (2| [ License | [ Update |

Code I DNA ‘ Input Compilation I Simulation I Analysis

u@@ [@l@ &@@m ‘ilgj U | Plot I Table IInitiaI state I Last state |

directive duration 10000.0 points 1000 “Load data|Save data| [ | Resample |Edit palette| |Show all|Hide all| [= <tb” b= |w= <tx x> |m <x to”>|
directive plot <tb” b>; <tx” x>;<x tor>; <flr x> i - Fimael>)
directive scale 10.0

def Inputi() = <tb” b>

def Input2() = <tx* x>

def Output() = <x to”>

def AND() = {tb"*}[b tx"]:[x to"]
def Reporter() = <fl >[x]{tor*}

( 10*Inputl()

| 10*Input2()|

| 100*AND()

| 100*Reporter()

)

-

Individuals

|

fmmumwm

I
| 0 1000 2000 3000 4000 5000 6000 7000 8000 S000 10000

S

(]

Ln10 Col14 Ch14 INS = |

Slide credit: Andrew Phillips (MSR)
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visual DSD: A tool for simulating DNA strand

displacement systems

Strand::=

Segment::=

{L" }<L>[S]<R>{R’ }

Segment concatenation

< S
S1
S1*

v T
< -
S1
S1*

VvV Fo.

<S>
{5}

19

Upper strand

Lower strand

Double stranded
complex with
overhangs

Slide credit: Andrew Phillips (MSR)
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visual DSD: Synftax of strands and

complexes

< <
RB N
L' N* R N*
Q.
S RC )
S / ; S N
s* N* S* N*
S @
< 9 S
st s s2 & s1 s .s2
os1* 5T 52¢ T "tos1* 5T g2¢ T
&
S &
5182 RD .. S1 s2 12 S2
g e — Bl e e

Slide credit: Afdrew Phillips (MSR)
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visual DSD: Reduction rules

RB
L N* R RU
Q.
> RC
s J/ N
S* N*
Qb—
e 9 RM

L} Sl* St Sz* es e

.. SL.S2 RD;

S1* S2*

51 s s2
"""g1* g* go*

.. S1  S2 12 S2
LN Sl* Sz* LN ]

Slide credit: Afdrew Phillips (MSR)
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